Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Weak Acid Resistance A (WarA), a Novel Transcription Factor Required for Regulation of Weak-Acid Resistance and Spore-Spore Heterogeneity in Aspergillus niger.

Identifieur interne : 000010 ( Main/Exploration ); précédent : 000009; suivant : 000011

Weak Acid Resistance A (WarA), a Novel Transcription Factor Required for Regulation of Weak-Acid Resistance and Spore-Spore Heterogeneity in Aspergillus niger.

Auteurs : Ivey A. Geoghegan [Royaume-Uni] ; Malcolm Stratford [Royaume-Uni] ; Mike Bromley [Royaume-Uni] ; David B. Archer [Royaume-Uni] ; Simon V. Avery [Royaume-Uni]

Source :

RBID : pubmed:31915214

Descripteurs français

English descriptors

Abstract

Propionic, sorbic, and benzoic acids are organic weak acids that are widely used as food preservatives, where they play a critical role in preventing microbial growth. In this study, we uncovered new mechanisms of weak-acid resistance in molds. By screening a library of 401 transcription factor deletion strains in Aspergillus fumigatus for sorbic acid hypersensitivity, a previously uncharacterized transcription factor was identified and named weak acid resistance A (WarA). The orthologous gene in the spoilage mold Aspergillus niger was identified and deleted. WarA was required for resistance to a range of weak acids, including sorbic, propionic, and benzoic acids. A transcriptomic analysis was performed to characterize genes regulated by WarA during sorbic acid treatment in A. niger Several genes were significantly upregulated in the wild type compared with a ΔwarA mutant, including genes encoding putative weak-acid detoxification enzymes and transporter proteins. Among these was An14g03570, a putative ABC-type transporter which we found to be required for weak-acid resistance in A. niger We also show that An14g03570 is a functional homologue of the Saccharomyces cerevisiae protein Pdr12p and we therefore name it PdrA. Last, resistance to sorbic acid was found to be highly heterogeneous within genetically uniform populations of ungerminated A. niger conidia, and we demonstrate that pdrA is a determinant of this heteroresistance. This study has identified novel mechanisms of weak-acid resistance in A. niger which could help inform and improve future food spoilage prevention strategies.IMPORTANCE Weak acids are widely used as food preservatives, as they are very effective at preventing the growth of most species of bacteria and fungi. However, some species of molds can survive and grow in the concentrations of weak acid employed in food and drink products, thereby causing spoilage with resultant risks for food security and health. Current knowledge of weak-acid resistance mechanisms in these fungi is limited, especially in comparison to that in yeasts. We characterized gene functions in the spoilage mold species Aspergillus niger which are important for survival and growth in the presence of weak-acid preservatives. Such identification of weak-acid resistance mechanisms in spoilage molds will help in the design of new strategies to reduce food spoilage in the future.

DOI: 10.1128/mSphere.00685-19
PubMed: 31915214
PubMed Central: PMC6952191


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Weak Acid Resistance A (WarA), a Novel Transcription Factor Required for Regulation of Weak-Acid Resistance and Spore-Spore Heterogeneity in Aspergillus niger.</title>
<author>
<name sortKey="Geoghegan, Ivey A" sort="Geoghegan, Ivey A" uniqKey="Geoghegan I" first="Ivey A" last="Geoghegan">Ivey A. Geoghegan</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Life Sciences, University of Nottingham, University Park, Nottingham</wicri:regionArea>
<orgName type="university">Université de Nottingham</orgName>
<placeName>
<settlement type="city">Nottingham</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Nottinghamshire</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stratford, Malcolm" sort="Stratford, Malcolm" uniqKey="Stratford M" first="Malcolm" last="Stratford">Malcolm Stratford</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Life Sciences, University of Nottingham, University Park, Nottingham</wicri:regionArea>
<orgName type="university">Université de Nottingham</orgName>
<placeName>
<settlement type="city">Nottingham</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Nottinghamshire</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bromley, Mike" sort="Bromley, Mike" uniqKey="Bromley M" first="Mike" last="Bromley">Mike Bromley</name>
<affiliation wicri:level="4">
<nlm:affiliation>Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester</wicri:regionArea>
<placeName>
<settlement type="city">Manchester</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Manchester</region>
</placeName>
<orgName type="university">Université de Manchester</orgName>
</affiliation>
</author>
<author>
<name sortKey="Archer, David B" sort="Archer, David B" uniqKey="Archer D" first="David B" last="Archer">David B. Archer</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Life Sciences, University of Nottingham, University Park, Nottingham</wicri:regionArea>
<orgName type="university">Université de Nottingham</orgName>
<placeName>
<settlement type="city">Nottingham</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Nottinghamshire</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Avery, Simon V" sort="Avery, Simon V" uniqKey="Avery S" first="Simon V" last="Avery">Simon V. Avery</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom simon.avery@nottingham.ac.uk.</nlm:affiliation>
<country wicri:rule="url">Royaume-Uni</country>
<wicri:regionArea>School of Life Sciences, University of Nottingham, University Park, Nottingham</wicri:regionArea>
<orgName type="university">Université de Nottingham</orgName>
<placeName>
<settlement type="city">Nottingham</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Nottinghamshire</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31915214</idno>
<idno type="pmid">31915214</idno>
<idno type="doi">10.1128/mSphere.00685-19</idno>
<idno type="pmc">PMC6952191</idno>
<idno type="wicri:Area/Main/Corpus">000233</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000233</idno>
<idno type="wicri:Area/Main/Curation">000233</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000233</idno>
<idno type="wicri:Area/Main/Exploration">000233</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Weak Acid Resistance A (WarA), a Novel Transcription Factor Required for Regulation of Weak-Acid Resistance and Spore-Spore Heterogeneity in Aspergillus niger.</title>
<author>
<name sortKey="Geoghegan, Ivey A" sort="Geoghegan, Ivey A" uniqKey="Geoghegan I" first="Ivey A" last="Geoghegan">Ivey A. Geoghegan</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Life Sciences, University of Nottingham, University Park, Nottingham</wicri:regionArea>
<orgName type="university">Université de Nottingham</orgName>
<placeName>
<settlement type="city">Nottingham</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Nottinghamshire</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stratford, Malcolm" sort="Stratford, Malcolm" uniqKey="Stratford M" first="Malcolm" last="Stratford">Malcolm Stratford</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Life Sciences, University of Nottingham, University Park, Nottingham</wicri:regionArea>
<orgName type="university">Université de Nottingham</orgName>
<placeName>
<settlement type="city">Nottingham</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Nottinghamshire</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bromley, Mike" sort="Bromley, Mike" uniqKey="Bromley M" first="Mike" last="Bromley">Mike Bromley</name>
<affiliation wicri:level="4">
<nlm:affiliation>Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester</wicri:regionArea>
<placeName>
<settlement type="city">Manchester</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Manchester</region>
</placeName>
<orgName type="university">Université de Manchester</orgName>
</affiliation>
</author>
<author>
<name sortKey="Archer, David B" sort="Archer, David B" uniqKey="Archer D" first="David B" last="Archer">David B. Archer</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Life Sciences, University of Nottingham, University Park, Nottingham</wicri:regionArea>
<orgName type="university">Université de Nottingham</orgName>
<placeName>
<settlement type="city">Nottingham</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Nottinghamshire</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Avery, Simon V" sort="Avery, Simon V" uniqKey="Avery S" first="Simon V" last="Avery">Simon V. Avery</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom simon.avery@nottingham.ac.uk.</nlm:affiliation>
<country wicri:rule="url">Royaume-Uni</country>
<wicri:regionArea>School of Life Sciences, University of Nottingham, University Park, Nottingham</wicri:regionArea>
<orgName type="university">Université de Nottingham</orgName>
<placeName>
<settlement type="city">Nottingham</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Nottinghamshire</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mSphere</title>
<idno type="eISSN">2379-5042</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acids (metabolism)</term>
<term>Acids (pharmacology)</term>
<term>Aspergillus niger (drug effects)</term>
<term>Aspergillus niger (genetics)</term>
<term>Drug Resistance, Fungal (MeSH)</term>
<term>Fungal Proteins (genetics)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Microbial Sensitivity Tests (MeSH)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Spores, Fungal (genetics)</term>
<term>Spores, Fungal (metabolism)</term>
<term>Transcription Factors (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides (métabolisme)</term>
<term>Acides (pharmacologie)</term>
<term>Aspergillus niger (effets des médicaments et des substances chimiques)</term>
<term>Aspergillus niger (génétique)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Protéines fongiques (génétique)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Résistance des champignons aux médicaments (MeSH)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Spores fongiques (génétique)</term>
<term>Spores fongiques (métabolisme)</term>
<term>Tests de sensibilité microbienne (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Acids</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Acids</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Aspergillus niger</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Aspergillus niger</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Aspergillus niger</term>
<term>Saccharomyces cerevisiae</term>
<term>Spores, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Aspergillus niger</term>
<term>Facteurs de transcription</term>
<term>Protéines fongiques</term>
<term>Saccharomyces cerevisiae</term>
<term>Spores fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Spores, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides</term>
<term>Spores fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acides</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Drug Resistance, Fungal</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Microbial Sensitivity Tests</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régulation de l'expression des gènes fongiques</term>
<term>Résistance des champignons aux médicaments</term>
<term>Tests de sensibilité microbienne</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Propionic, sorbic, and benzoic acids are organic weak acids that are widely used as food preservatives, where they play a critical role in preventing microbial growth. In this study, we uncovered new mechanisms of weak-acid resistance in molds. By screening a library of 401 transcription factor deletion strains in
<i>Aspergillus fumigatus</i>
for sorbic acid hypersensitivity, a previously uncharacterized transcription factor was identified and named weak acid resistance A (WarA). The orthologous gene in the spoilage mold
<i>Aspergillus niger</i>
was identified and deleted. WarA was required for resistance to a range of weak acids, including sorbic, propionic, and benzoic acids. A transcriptomic analysis was performed to characterize genes regulated by WarA during sorbic acid treatment in
<i>A. niger</i>
Several genes were significantly upregulated in the wild type compared with a Δ
<i>warA</i>
mutant, including genes encoding putative weak-acid detoxification enzymes and transporter proteins. Among these was An14g03570, a putative ABC-type transporter which we found to be required for weak-acid resistance in
<i>A. niger</i>
We also show that An14g03570 is a functional homologue of the
<i>Saccharomyces cerevisiae</i>
protein Pdr12p and we therefore name it PdrA. Last, resistance to sorbic acid was found to be highly heterogeneous within genetically uniform populations of ungerminated
<i>A. niger</i>
conidia, and we demonstrate that
<i>pdrA</i>
is a determinant of this heteroresistance. This study has identified novel mechanisms of weak-acid resistance in
<i>A. niger</i>
which could help inform and improve future food spoilage prevention strategies.
<b>IMPORTANCE</b>
Weak acids are widely used as food preservatives, as they are very effective at preventing the growth of most species of bacteria and fungi. However, some species of molds can survive and grow in the concentrations of weak acid employed in food and drink products, thereby causing spoilage with resultant risks for food security and health. Current knowledge of weak-acid resistance mechanisms in these fungi is limited, especially in comparison to that in yeasts. We characterized gene functions in the spoilage mold species
<i>Aspergillus niger</i>
which are important for survival and growth in the presence of weak-acid preservatives. Such identification of weak-acid resistance mechanisms in spoilage molds will help in the design of new strategies to reduce food spoilage in the future.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31915214</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>10</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2379-5042</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>5</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>01</Month>
<Day>08</Day>
</PubDate>
</JournalIssue>
<Title>mSphere</Title>
<ISOAbbreviation>mSphere</ISOAbbreviation>
</Journal>
<ArticleTitle>Weak Acid Resistance A (WarA), a Novel Transcription Factor Required for Regulation of Weak-Acid Resistance and Spore-Spore Heterogeneity in Aspergillus niger.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00685-19</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mSphere.00685-19</ELocationID>
<Abstract>
<AbstractText>Propionic, sorbic, and benzoic acids are organic weak acids that are widely used as food preservatives, where they play a critical role in preventing microbial growth. In this study, we uncovered new mechanisms of weak-acid resistance in molds. By screening a library of 401 transcription factor deletion strains in
<i>Aspergillus fumigatus</i>
for sorbic acid hypersensitivity, a previously uncharacterized transcription factor was identified and named weak acid resistance A (WarA). The orthologous gene in the spoilage mold
<i>Aspergillus niger</i>
was identified and deleted. WarA was required for resistance to a range of weak acids, including sorbic, propionic, and benzoic acids. A transcriptomic analysis was performed to characterize genes regulated by WarA during sorbic acid treatment in
<i>A. niger</i>
Several genes were significantly upregulated in the wild type compared with a Δ
<i>warA</i>
mutant, including genes encoding putative weak-acid detoxification enzymes and transporter proteins. Among these was An14g03570, a putative ABC-type transporter which we found to be required for weak-acid resistance in
<i>A. niger</i>
We also show that An14g03570 is a functional homologue of the
<i>Saccharomyces cerevisiae</i>
protein Pdr12p and we therefore name it PdrA. Last, resistance to sorbic acid was found to be highly heterogeneous within genetically uniform populations of ungerminated
<i>A. niger</i>
conidia, and we demonstrate that
<i>pdrA</i>
is a determinant of this heteroresistance. This study has identified novel mechanisms of weak-acid resistance in
<i>A. niger</i>
which could help inform and improve future food spoilage prevention strategies.
<b>IMPORTANCE</b>
Weak acids are widely used as food preservatives, as they are very effective at preventing the growth of most species of bacteria and fungi. However, some species of molds can survive and grow in the concentrations of weak acid employed in food and drink products, thereby causing spoilage with resultant risks for food security and health. Current knowledge of weak-acid resistance mechanisms in these fungi is limited, especially in comparison to that in yeasts. We characterized gene functions in the spoilage mold species
<i>Aspergillus niger</i>
which are important for survival and growth in the presence of weak-acid preservatives. Such identification of weak-acid resistance mechanisms in spoilage molds will help in the design of new strategies to reduce food spoilage in the future.</AbstractText>
<CopyrightInformation>Copyright © 2020 Geoghegan et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Geoghegan</LastName>
<ForeName>Ivey A</ForeName>
<Initials>IA</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stratford</LastName>
<ForeName>Malcolm</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bromley</LastName>
<ForeName>Mike</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Archer</LastName>
<ForeName>David B</ForeName>
<Initials>DB</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Avery</LastName>
<ForeName>Simon V</ForeName>
<Initials>SV</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom simon.avery@nottingham.ac.uk.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>208396/Z/17/Z</GrantID>
<Acronym>WT_</Acronym>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>BB/N017129/1</GrantID>
<Acronym>BB_</Acronym>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mSphere</MedlineTA>
<NlmUniqueID>101674533</NlmUniqueID>
<ISSNLinking>2379-5042</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000143">Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000143" MajorTopicYN="N">Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001234" MajorTopicYN="N">Aspergillus niger</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025141" MajorTopicYN="N">Drug Resistance, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008826" MajorTopicYN="N">Microbial Sensitivity Tests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013172" MajorTopicYN="N">Spores, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Aspergillus </Keyword>
<Keyword MajorTopicYN="Y">food spoilage</Keyword>
<Keyword MajorTopicYN="Y">fungi</Keyword>
<Keyword MajorTopicYN="Y">transcription factors</Keyword>
<Keyword MajorTopicYN="Y">weak-acid resistance</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31915214</ArticleId>
<ArticleId IdType="pii">5/1/e00685-19</ArticleId>
<ArticleId IdType="doi">10.1128/mSphere.00685-19</ArticleId>
<ArticleId IdType="pmc">PMC6952191</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Int J Food Microbiol. 2014 Jul 2;181:40-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24813627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1991 Apr;19(4):261-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1868576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1985;36(3):321-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3000883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Nov;76(22):7526-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20851956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2019 Aug;17(8):479-496</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31235888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2008 Jan;74(2):550-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18039817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2019 Jan 09;9:3238</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30687253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2020 Jan 22;11(1):427</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31969561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Mar;23(5):1775-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12588995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2014 Jun;16(6):1729-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24000788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2010 Aug;47(8):683-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20452450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Feb 20;47(3):1211-1224</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30476185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Jan 15;31(2):166-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25260700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Aug;181(15):4644-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10419965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Food Microbiol. 2012 Jul 16;157(3):375-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22726726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Aug 3;17(15):4257-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9687494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2004 Aug;21(11):927-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15334557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2008 Apr;154(Pt 4):1251-1257</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18375817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1987;56(1):117-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2824287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2016 Sep;94:23-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27378203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Aug;49(4):1081-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12890030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Appl Microbiol. 2019;107:29-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31128748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Microbiol. 2019 Sep;54(1):e88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31518064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Food Microbiol. 2019 Oct 2;306:108258</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31362161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1984 Nov;130(11):2845-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6396375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(12):550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25516281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2006 Aug;4(8):577-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Oct 1;22(19):5147-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14517252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Bioeng Biotechnol. 2019 Sep 27;7:249</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31612133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Res Int. 2014;2014:251512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25110665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Mar 04;9(4):357-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22388286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Nov 13;258(5085):1143-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1439822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Jan 15;25(2):451-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9016579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Apr 3;452(7187):604-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18385733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1973 Feb 2;241(5388):321-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4633553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2019 Jun 6;15(6):e1007726</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31170271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2008 Jul;45(7):1103-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18479949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Oct;73(20):6534-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17766451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell Fact. 2010 Oct 25;9:79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20973990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Jun 25;522(7557):497-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26083754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2017 Jan;98:61-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28011318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Food Microbiol. 2013 Aug 16;166(1):126-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23856006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2004 Jun;70(6):3506-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15184150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Food Microbiol. 1989 Jul;8(4):343-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2641686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2002 Mar;35(2):135-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11848676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Nov 11;337(1):95-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16176797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Nov;81(22):7813-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26341199</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Grand Manchester</li>
<li>Nottinghamshire</li>
</region>
<settlement>
<li>Manchester</li>
<li>Nottingham</li>
</settlement>
<orgName>
<li>Université de Manchester</li>
<li>Université de Nottingham</li>
</orgName>
</list>
<tree>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Geoghegan, Ivey A" sort="Geoghegan, Ivey A" uniqKey="Geoghegan I" first="Ivey A" last="Geoghegan">Ivey A. Geoghegan</name>
</region>
<name sortKey="Archer, David B" sort="Archer, David B" uniqKey="Archer D" first="David B" last="Archer">David B. Archer</name>
<name sortKey="Avery, Simon V" sort="Avery, Simon V" uniqKey="Avery S" first="Simon V" last="Avery">Simon V. Avery</name>
<name sortKey="Bromley, Mike" sort="Bromley, Mike" uniqKey="Bromley M" first="Mike" last="Bromley">Mike Bromley</name>
<name sortKey="Stratford, Malcolm" sort="Stratford, Malcolm" uniqKey="Stratford M" first="Malcolm" last="Stratford">Malcolm Stratford</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000010 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000010 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31915214
   |texte=   Weak Acid Resistance A (WarA), a Novel Transcription Factor Required for Regulation of Weak-Acid Resistance and Spore-Spore Heterogeneity in Aspergillus niger.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31915214" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020